Cellio – Sensors, Sensors, Everywhere


Most people don’t realize just how many sensors are already installed to monitor things around us every day and in every aspect of our lives. For example, smoke detectors (and carbon monoxide detectors) are in most every house and apartment. Temperature sensors (thermostats) are installed in every house that has an air conditioning/heating unit. Hot water heaters have a temperature sensor built in to detect/manage/maintain the temperature of the hot water. Float switches are in our toilet tanks to keep them from overfilling and flooding our homes. In cars, sensors for fuel level, engine temperature, oil level, and emissions are monitoring the performance of the vehicle. And in Industrial settings, even more sensors are present to keep equipment and processes in range – and alert us when they go out of bounds. The primary drawback for most of these sensors is that the information from the sensors is integrated into and limited to the device – not accessible remotely by users or other devices. Remote access to the data from these sensors could improve efficiency and safety. Consider the example of a mission critical pump motor that keeps an area from flooding and works on a float switch. If no one is there to manually monitor the water level, the switch, the motor/pump, and the flow of water being discharged, blind faith is relied upon that the system is working. Wouldn’t it be smarter and safer to know when the water level is too high and have confirmation that the motor is switched on and running?



Simple Electro-Mechanical Sensors

Sensors are typically digital or analog. This simply means they indicate if something is ON/OFF, or provide some level of measure between ON and OFF. For example, the digital signal of a fill level in a tank might be that it is EMPTY or FULL or that the acceptable set level has been exceeded. Alternatively, an analog sensor used in the same tank might generate a signal that indicates a measurement of the level of the liquid in the tank to an accuracy of within an inch. Both of these sensor types are useful and acceptable for monitoring tank level – it depends on the application. In either case, the mechanism may be mechanical and the output of these sensors is electrical.  This electrical “signal” provides the information that is then used to determine the level and whether there is a need to turn something ON or OFF.



Simple Connections to Inputs

Most of these simple sensors have one output that provides the electrical information (the signal) to devices like Cellio through a direct wired connection. Once the sensor is wired to the Cellio Transceiver device, Cellio monitors the electrical signal for the measurements from the sensor and then transmits them wirelessly to Cellio Gateway devices. From the Cellio Gateway devices the information is sent to back-end data storage where it can be used for alerts, notifications, computations, analytics, display, and decision making. The collected data can be graphed, compared, calculated, stored, deleted, shared, re-transmitted, and much more.



Turning Simple Sensor Inputs into Complex Decision Making

Data from one sensor monitoring one aspect of one item can be used to produce powerful results, especially if monitoring something that had previously gone without monitoring. More impressive, and complex, results can be achieved by remote monitoring aspects of many items in a process, a facility, an enterprise, up and down a supply-chain, and especially across a geography. For example, monitoring the water levels of a widely spread set of monitoring wells/reservoirs could give citizens, businesses, and public officials advanced notification for conditions that could turn into flooding, mudslides, traffic accidents, and other emergency situations. How the collected data from the sensors is aggregated, analyzed, and distributed is critical to how the data can be used for decision making. Decision making with Cellio and connected devices could be as simple as sending out and alert/notification over SMS or email. Or it could be as complex as sending a signal to a device (like a PLC) or to another process system that starts to pump the water in a coordinated way to alleviate current conditions and avoid compounding the problem by swamping out a pump further downstream. The impact can be profound.



Bonus: Turning Inputs into Outputs

Seeing consistently, accurately, and timely what is “in the field” not only improves visibility and situational awareness to make more informed decisions, but it also provides a platform from which to use the informed decisions to remotely control devices in the field. As noted above, as the picture (on a map, in a table, through graphs, in a process diagram, or other relevant visual representation) forms from reports of devices in the field, short term, mid term, and long term options can be assessed while immediate action can be taken to alleviate conditions that could lead to equipment failure (unless allowing the equipment to fail would lead to a better overall outcome). Cellio devices also provide the capability to output electrical signals that can be used to signal/control devices in the field. For example, an output could turn on a red light that is used to signal workers of an error condition (or a green light that is used to signal an all clear condition). These output signals, coupled with simple or complex logic and help process and equipment owners close the loop.




The Cellio Wireless Network has been designed to be as quick, affordable, and high quality. Cellio Wireless Transceivers allow the Cellio system and customers to quickly and easily expand existing systems with as many sensors and controllers as they like (with minimal incremental expense).  The data collected in the back-end data system can be easily and rapidly mapped and provided for view on PC’s, tablets, smartphones, etc. both via browser views as well as automatically generated native mobile app views. Sharing and modifying the dashboard views is quick and easy. All of this is available and easy to put in place today. There is a saying that you should “Inspect what you expect”. From simple sensors generating simple data link tank empty/full, to vast networks of tanks that warn of impending flood conditions, Cellio can be counted on to monitor and wirelessly report the data so that it can be used to make very simple or very complex decisions – and then send information back to the devices to respond in as efficient and effective a manner possible.