Overview
When considering the most cost effective way to monitor/control the greatest number of sensors/controllers while spending the least on CAPEX and OPEX, a couple of approaches can be considered.
On one end of the spectrum, you might consider installing stand-alone devices on every asset to be monitored or controlled. Every device will likely need to have similar capabilities to all the other devices and they will all either report through each other (a bandwidth, latency, and battery killer), or to a single point (typically requiring a sizable transmission range), or completely on their own (usually the more expensive CAPEX and OPEX option).
On the other end of the spectrum is a more distributed approach where a few hardware devices are connected to all of the sensors and controllers. The sensors and controllers share these “edge” hardware resources to then report back into a single point that has the more expensive communication components required for connecting to an external network (cellular, Wi-Fi, etc.). This distributed approach with its hierarchy of specialized devices can minimize the per sensor/controller connection costs while maximizing battery life, range, and scalable deployment.
Caption: Cellio Transceivers and Gateways help to minimize TCO in IIoT.
Single Gateway Serves 10’s, 100’s, 1000’s of Transceivers
A central point of savings across a deployed network of sensors and controllers is having them communicate to a single (or a very small number) of more capable devices. This minimizes the more expensive CAPEX elements (cellular and wi-fi components) and OPEX elements (cellular and wi-fi access and data charges). Cellio Transceivers up to a mile away can share a single Gateway and the Gateway can take care of the cellular connection (meaning one cellular activation and as little data transmitted as necessary). With a radius of one mile, one Gateway could serve up to 3 square miles (enough to cover most campus, facilities, etc.).
Caption: A single Cellio Gateway serving many Transceivers – serving all the sensors and controllers.
Single Transceiver Serves up to 16 Direct IO
In some applications there are assets that have multiple sensors from which to collect data as well as resources that can be used for signaling or control (an example might be a refrigeration unit that can tell multiple zones of temperature and humidity, current and voltage usage, and perhaps an overflow detector while also allowing for control of temperature setting, remote on/off, lighting, and other parameters).
In other applications there are many assets in and around each other and they may all need to be monitored or controlled (an example might be gas cylinders and pressure monitoring of each).
The Cellio Transceivers support connecting sensors, indicators, controllers by making 16 IO points available to connect analog and digital input signals and digital output signals.
Caption: A single Transceiver can be connected to up to 16 inputs/outputs making the CAPEX for connecting to many sensors/controllers very inexpensive.
Minimal Overhead Minimizes Data Charges While Maximizing Throughput
By leveraging the design of the Transceivers to transmit and receive as little data as necessary to and from the Gateway, the Gateway is able to transmit and receive as little data as necessary through the cellular or wi-fi network(s). With IIoT and M2M plans typically charging on a per kB/MB basis, minimizing the data and the overhead for transmitting the data through the various sessions made by Gateway devices throughout the day can reduce overall data transmissions on a monthly basis to 10’s of kilobytes. This translates into significant savings in OPEX – especially when 100,000’s or millions of deployed remote sensors and controllers are contemplated. The additional benefit is reduced requirements in back-end (or cloud based) data storage, data hosting, data analytics, and data dashboarding resources required to make the most of the data collected and monitored.
Bonus: Installing and Scaling additional Transceivers and Gateways
As noted above, a single Gateway device can support many Transceiver devices supporting many sensors/controllers. Once a Gateway is installed, it is very easy and inexpensive to add additional Transceivers (and additional Gateways as desired). Thus, as additional environmental parameters need to be monitored or additional devices need to be controlled they can be connected to existing Transceiver devices or additional Transceiver devices can be added quickly and easily – leveraging the installed Gateways.
Conclusion
The Cellio Wireless Network has been designed to be as quick, affordable, and high quality. Cellio Wireless Transceivers allow the Cellio system and customers to quickly and easily expand existing systems with as many sensors and controllers as they like (with minimal incremental expense). The data collected in the back-end data system can be easily and rapidly mapped and provided for view on PC’s, tablets, smartphones, etc. both via browser views as well as automatically generated native mobile app views. Sharing and modifying the dashboard views is quick and easy. All of this is available and easy to put in place today. We know that getting IIoT/M2M/IoT solutions successfully designed/implemented/running from scratch can be tough if you try to do it alone – that is why we have assembled all the pieces you need with Cellio. If your priority is minimizing total cost of ownership (TCO – installation, configuration, capital expenses, operational expenses, and ongoing support and maintenance) – make sure you include Cellio in your evaluations, you’ll be pleasantly surprised.